атомы германия, кружки с цифрами «+5» и «+3» — внедренные в германий атомы пятивалентного мышьяка и трехвалентного индия
позволяющими ему соединяться с другими элементами. На рис. 185 условно изображено строение кристалла германия. Кружки с цифрами «+4» изображают отдельные атомы германия, каждый из которых связан с четырьмя своими соседями парными связями (двойные линия на ряс. 185). Эта связь создается взаимодействием одного из валентных электронов данного атома с одним из валентных электронов его соседа. Если под действием теплового движения или поглощенного света в каком-нибудь месте кристалла (точка а на рис. 185) произойдет отрыв электрона, то там возникает незанятое место (дырка), а оторванный электрон становится свободным. Описанное выше перемещение электронов и дырок под действием сил поля обусловливает, как говорят, собственную проводимость германия. Число их относительно невелико: дырок и электронов при комнатной температуре имеется 2,5•1019 в 1 м3, тогда как число атомов в 1 м3 германия равно 4,2•1028.
246
Представим себе теперь, что в германии имеется небольшая примесь какого-нибудь пятивалентного элемента, скажем мышьяка, т. е. что небольшая доля атомов германия в кристалле замещена атомами мышьяка (точка b на рис. 185). У мышьяка имеется пять валентных электронов, обеспечивающих его связи с другими атомами. Когда атом мышьяка замещает атом германия, то четыре из этих электронов образуют прочные связи с четырьмя соседними атомами германия, а пятый оказывается связанным очень слабо и даже при комнатной температуре очень легко становится свободным за счет энергии теплового движения. Таким образом, почти каждый введенный в германий атом мышьяка создает один лишний свободный электрон. Число же дырок при этом не увеличивается, потому что оставшийся ион мышьяка прочно связан с четырьмя своими соседями двойными связями и переход электронов от соседних нейтральных атомов к иону мышьяка невозможен. Если даже количество введенного мышьяка очень мало, например составляет только одну миллионную долю числа атомов германия, то эта примесь даст в 1 м3 около 1022 дополнительных электронов, т. е. примерно в 1000 раз больше, чем их имелось в чистом германии, но не увеличит числа дырок. В таком полупроводнике свободные электроны являются основными, т. е. представленными в большинстве носителями заряда, а дырки — неосновными, т. е. представленными в меньшинстве. Иными словами, германий с примесью (даже очень малой) мышьяка становится электронным проводником (n-типа).
Представим себе теперь, что мы ввели в германий примесь какого-нибудь трехвалентного элемента, например индия (точка с на рис. 185). Так как у индия имеется всего три валентных электрона, то он будет прочно связан только с тремя соседними атомами германия, а четвертая связь будет незаполнена. При этих условиях какой-нибудь электрон соседнего атома может легко оторваться от своего атома и заполнить эту связь, а соответствующий атом превратится в ион (дырку), связанный с соседними атомами только тремя связями. Атом индия при этом окажется заряженным отрицательно. После этого электрон какого-нибудь соседнего атома может оторваться и заполнить недостающую связь у иона, а сам этот атом превратится в положительный ион и т. д. Таким образом, место, где находится положительный заряд, будет перемещаться по кристаллу. В поле это перемещение дырок носит направленный характер, происходит преимущественно по направлению поля, т. е. создает электрический ток. Мы видим, что введение в германий примеси индия увеличивает число дырок, не увеличивая числа свободных электронов. Такой полупроводник является дырочным полупроводником (p-типа), т. е. в нем дырки являются основными носителями заряда, а электроны — неосновными.
Разобранный нами пример германия с примесями мышьяка и индия является относительно простым. На практике приходится встречаться и с более сложными случаями влияния примесей на электрические свойства полупроводников. Но во всяком случае этот пример показывает, каким образом даже ничтожные следы примесей могут коренным образом изменять электрические свойства полупроводников и механизм прохождения через них тока. Это создает много трудностей в работе с полупроводниками, но это же обеспечивает и возможность получения полупроводников с разнообразными свойствами, дающими возможность применять их для решения очень важных и разнообразных технических задач.
Различие между электронной и дырочной проводимостью полупроводников позволило объяснить ряд фактов, которые раньше казались загадочными. В § 84, например, говоря о полупроводниковых термо-
247 далее 


Используются технологии uCoz